Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Acetatodiaqua[3-(salicyloylhydra-zono)butan-2-one oximato]nickel(II) ethanol solvate

You Song, Yan Xu, Dun-Ru Zhu and Xiao-Zeng You*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: xraychem@nju.edu.cn

Received 10 September 1999
Accepted 6 January 2000
In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, the coordination geometry of the $\mathrm{Ni}^{\mathrm{II}}$ atom is a distorted octahedron, with one carbonyl O and two imino N atoms of the hydrazone ligand, together with an acetate O atom, comprising the basal plane, and the two water O atoms occupying axial positions.

Comment

Salicylhydroxamic acid and analogous derivatives, because of their nature as polydentate ligands, may function as cation recognition agents to form metallacrown ether compounds (Gibney et al., 1994; Psomas et al., 1998), but salicylic hydrazide, with a similar structure, does not exhibit this function. Compared with salicylic hydrazide, salicyloyl hydrazone Schiff bases have additional donor atoms, whose presence introduces a wider range of properties (Kwak et al., 1998) as new types of inorganic host molecules. We report here the crystal structure of a new nickel(II)-salicyloylhydrazone complex, (I), derived from salicylic hydrazide.

The coordination geometry of the $\mathrm{Ni}^{\mathrm{II}}$ atom in (I) is a distorted octahedron. The two water molecules occupy axial positions, while the carbonyl O5 and the imino N1 and N2 atoms of the hydrazone ligand, together with the acetate O 1 atom, comprise the basal plane (mean deviation from the plane of $0.0084 \AA$). The basal plane is stabilized by intramolecular $\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$ hydrogen bonds, in which O 4 is from the oxime and O 2 from the acetate. Atom O6 of the hydrazone ligand and atom O 3 of the ethanol solvate molecule do not form coordination bonds but can both link two water
molecules from two neighbouring molecules of the complex by strong intermolecular hydrogen bonds of the form $\mathrm{O} 1 W^{\mathrm{i}}-$ $\mathrm{H} 2^{\mathrm{i}} \cdots \mathrm{O} 6, \mathrm{O} 2 W^{\mathrm{ii}}-\mathrm{H} 3^{\mathrm{ii}} \cdots \mathrm{O} 6, \mathrm{O} 1 W-\mathrm{H} 1 \cdots \mathrm{O} 3$ and $\mathrm{O} 2 W^{\mathrm{iii}}-$ $\mathrm{H} 4{ }^{\mathrm{iii}} .$. O3; atom O6 has additional intramolecular hydrogen bonding with $\mathrm{N} 3(\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O}$) [symmetry codes: (i) $-x-$ $2,-y,-z$; (ii) $-x-3,-y,-z$; (iii) $x+1, y, z]$. Thus, two rows of complex molecules are connected by these hydrogen bonds to form polymeric chains, which are then connected by O3$\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iv }}$ hydrogen bonds to yield a two-dimensional layer structure (see Fig. 2) [symmetry code: (iv) $-x-1,1-y$, $1-z]$.

Figure 1
The structure of (I) showing 50\% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as spheres of arbitrary radii.

Figure 2
Packing diagram for (I).

Experimental

Compound (I) was synthesized by the reaction of a 1:1 molar ratio of diacetyl monoxime salicyloylhydrazone and nickel(II) acetate tetrahydrate in ethanol at room temperature. Green single crystals of (I)
suitable for X-ray diffraction were obtained by evaporating the solution in air for several weeks.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)-\right.$	$Z=2$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=434.09$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 25
$a=7.4120(15) \AA$	reflections
$b=11.505(2) \AA$	$\theta=1.56-6.68^{\circ}$
$c=13.255(3) \AA$	$\mu=1.020 \mathrm{~mm}^{-1}$
$\alpha=103.13(3)^{\circ}$	$T=293(2) \mathrm{K}$
$\beta=103.97(3)^{\circ}$	Prism, green
$\gamma=106.80(3)^{\circ}$	$0.40 \times 0.20 \times 0.05 \mathrm{~mm}$
$V=995.0(3) \AA^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffract-

> ometer
$2 \theta / \omega$ scans
Absorption correction: empirical via ψ scan (North et al., 1968)
$T_{\text {min }}=0.654, T_{\text {max }}=0.947$
3784 measured reflections
3486 independent reflections
2472 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.134$
$S=1.000$
3484 reflections
244 parameters
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=24.98^{\circ}$
$h=0 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: none

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0842 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.59 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

Ni1-O1	$1.990(3)$	Ni1-O1W	$2.040(3)$
Ni1-N1	$2.012(3)$	Ni1-N2	$2.100(3)$
Ni1-O2W	$2.037(3)$	Ni1-O5	$2.148(3)$
O2W-Ni1-O1 W	$177.10(11)$	O1-Ni1-O5	$98.23(11)$
O1-Ni1-N2	$109.91(12)$	N1-Ni1-O5	$76.94(12)$
N1-Ni1-N2	$74.92(13)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	2.576 (5)	163
$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{H} 2^{\mathrm{i}} \cdots \mathrm{O} 6$	2.688 (5)	164
$\mathrm{O} 2 W^{\text {iii }}-\mathrm{H} 3^{\text {iii }} \ldots \mathrm{O} 6$	2.658 (5)	172
$\mathrm{O} 1 W-\mathrm{H} 1 \cdots \mathrm{O} 3$	2.754 (4)	166
$\mathrm{O} 2 W^{\text {iii }}-\mathrm{H} 4{ }^{\text {iiii }} \ldots \mathrm{O} 3$	2.773 (5)	158
$\mathrm{O} 3-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iv }}$	2.648 (4)	173
N3-H3A \cdots O6	2.522 (3)	135

Symmetry codes: (i) $-2-x,-y,-z$; (ii) $-3-x,-y,-z$; (iii) $1+x, y, z$; (iv) $-1-x, 1-y, 1-z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL-Plus (Sheldrick, 1990b); software used to prepare material for publication: SHELXL93.

The work is supported by the National Science Foundation of China and the Analysis and Testing Found of Nanjing University. The authors would like to thank Hua-Qing Wang for help in the structure determination.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1121). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. \& Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.
Kwak, B., Rhee, H., Park, S. \& Lah, M. S. (1998). Inorg. Chem. 37, 3599-3602.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Psomas, G., Dendrinou-Samara, C., Alexiou, M., Tsohos, A., Raptopoulou, C. P., Terzis, A. \& Kessissoglou, D. P. (1998). Inorg. Chem. 37, 6556-6557.

Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.

